Complex Water-ice Mixtures on NII Nereid: Constraints from NIR Reflectance

Author:

Sharkey Benjamin N. L.,Reddy VishnuORCID,Sanchez Juan A.ORCID,Izawa Matthew R. M.ORCID,Harris Walter M.ORCID

Abstract

Abstract Nereid, Neptune’s third-largest satellite, lies in an irregular orbit and is the only outer satellite in the system (apart from Triton) that can be spectroscopically characterized with the current generation of Earth-based telescopes. We report our results on the spectral characterization of Nereid using its reflectance spectrum from 0.8 to 2.4 μm, providing the first measurements over the range of 0.8–1.4 μm. We detect spectral absorption features of crystalline water ice in close agreement with previous measurements. We show that model fits of simple intimate mixtures including water ice do not provide simultaneous matches to absorption band depths at 1.5 and 2.0 μm when accounting for the spectral continuum. Possible solutions include invoking a more complex continuum, including both crystalline and amorphous water ice, and allowing for submicron-sized grains. We show that mixtures including magnetite and the CM2 chondrite Murchison provide a flexible framework for interpreting spectral variation of bodies with neutral-sloped spectra like that of Nereid. Magnetite in particular provides a good match to the spectral continuum without requiring the presence of tholin-like organics. We note that carbonaceous chondrites and their components may be useful analogs for the non-ice components of outer solar system bodies, consistent with recent findings by Fraser et al. Comparison to spectra of large trans-Neptunian objects and satellites of Uranus show that Nereid’s low albedo, deep water bands, and neutral color is distinct from many other icy objects, but such comparisons are limited by an incomplete understanding of spectral variability among ∼100 km-sized icy bodies.

Funder

NASA Near Earth Object Observations Program

NASA Earth and Space Sciences Fellowship

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3