Science-rich Sites for In Situ Resource Utilization Characterization and End-to-end Demonstration Missions

Author:

van der Bogert Carolyn H.ORCID,Hiesinger Harald,Pretto Isacco,Venditti Floriano,Lewang Alexander,Richter Lutz,Binns David,Gläser Philipp

Abstract

Abstract Within the European Space Agency’s “Commercial In Situ Resource Utilization (ISRU) Demonstration Mission Preparation Phase,” we examined two types of lunar sites in preparation for an ISRU demonstration mission. First, we considered poorly characterized potential resource sites. For these so-called characterization sites, precursor missions would investigate the material properties and address strategic knowledge gaps for their use as ISRU feedstock. Regions of interest for characterization missions include the Aristarchus plateau, Montes Harbinger/Rimae Prinz, Sulpicius Gallus, and Rima Bode. Regional pyroclastic deposits at the Aristarchus plateau and adjacent Montes Harbinger/Rimae Prinz exhibit remotely sensed low-Ti, high-Fe2+ compositions. They differ from the high-Ti pyroclastics at Rima Bode and Sulpicius Gallus, which are similar to the pyroclastics northwest of the Taurus Littrow valley (Apollo 17 site). Thus, exploration of the Aristarchus plateau would allow investigation of previously uncharacterized materials, whereas Rima Bode or Sulpicius Gallus would allow comparison to Apollo 17 pyroclastics. Any of these sites would enable evaluation of reported H2O/OH in these deposits. Second, we examined a possible site for a direct ISRU demonstrator mission. For a stand-alone end-to-end (E2E) ISRU demonstrator, a fuller understanding of the physical and compositional characteristics of potential feedstock is required for mission risk reduction. In this case, locations near preexisting sites would allow extrapolation of ground truth to nearby deposits. Because a Ti-rich pyroclastic deposit appears advantageous from beneficiation and compositional perspectives, we examine an example E2E demo site northwest of the Taurus Littrow valley. Hydrogen and methane reduction, as well as the Fray–Farthing–Chen Cambridge process, could be tested there.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3