Investigating the Condensation of Benzene (C6H6) in Titan’s South Polar Cloud System with a Combination of Laboratory, Observational, and Modeling Tools

Author:

Dubois DavidORCID,Iraci Laura T.,Barth Erika L.,Salama FaridORCID,Vinatier SandrineORCID,Sciamma-O’Brien EllaORCID

Abstract

Abstract We have combined laboratory, modeling, and observational efforts to investigate the chemical and microphysical processes leading to the formation of the cloud system that formed at an unusually high altitude (>250 km) over Titan’s south pole after the northern spring equinox. We present here a study focused on the formation of C6H6 ice clouds at 87°S. As the first step of our synergistic approach, we have measured, for the first time, the equilibrium vapor pressure of pure crystalline C6H6 at low temperatures (134–158 K) representative of Titan’s atmosphere. Our laboratory data indicate that the experimental vapor pressure values are larger than those predicted by extrapolations found in the literature calculated from higher-temperature laboratory measurements. We have used our experimental results along with temperature profiles and C6H6 mixing ratios derived from observational data acquired by the Cassini Composite Infrared Spectrometer (CIRS) as input parameters in the coupled microphysics radiative transfer Community Aerosol and Radiation Model for Atmospheres (CARMA). CARMA simulations constrained by these input parameters were conducted to derive C6H6 ice particle size distribution, gas volume mixing ratios, gas relative humidity, and cloud altitudes. The impact of the vapor pressure on the CIRS data analysis and in the CARMA simulations was investigated and resulted in both cases in benzene condensation occurring at lower altitude in the stratosphere than previously thought. In addition, the stratospheric C6H6 gas abundances predicted with the new saturation relationship are ∼1000× higher than previous calculations between 150–200 km, which results in larger particle sizes.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3