New Evidence for Wet Accretion of Inner Solar System Planetesimals from Meteorites Chelyabinsk and Benenitra

Author:

Jin ZiliangORCID,Bose MaitrayeeORCID,Lichtenberg TimORCID,Mulders Gijs D.ORCID

Abstract

Abstract We investigated the hydrogen isotopic compositions and water contents of pyroxenes in two recent ordinary chondrite falls, namely, Chelyabinsk (2013 fall) and Benenitra (2018 fall), and compared them to three ordinary chondrite Antarctic finds, namely, Graves Nunataks GRA 06179, Larkman Nunatak LAR 12241, and Dominion Range DOM 10035. The pyroxene minerals in Benenitra and Chelyabinsk are hydrated (∼0.018–0.087 wt.% H2O) and show D-poor isotopic signatures (δDSMOW from −444‰ to −49‰). On the contrary, the ordinary chondrite finds exhibit evidence of terrestrial contamination with elevated water contents (∼0.039–0.174 wt.%) and δDSMOW values (from −199‰ to −14‰). We evaluated several small parent-body processes that are likely to alter the measured compositions in Benenitra and Chelyabinsk and inferred that water loss in S-type planetesimals is minimal during thermal metamorphism. Benenitra and Chelyabinsk hydrogen compositions reflect a mixed component of D-poor nebular hydrogen and water from the D-rich mesostases. A total of 45%–95% of water in the minerals characterized by low δDSMOW values was contributed by nebular hydrogen. S-type asteroids dominantly composed of nominally anhydrous minerals can hold 254–518 ppm of water. Addition of a nebular water component to nominally dry inner solar system bodies during accretion suggests a reduced need of volatile delivery to the terrestrial planets during late accretion.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3