Abstract
Abstract
Electron cyclotron maser emission (ECME) is regarded as a plausible source for coherent radio radiations from solar active regions (e.g., solar radio spikes). In this Letter, we present a 2D3V fully kinetic electromagnetic particle-in-cell simulation to investigate the wave excitations and subsequent nonlinear processes induced by the energetic electrons in the loss-cone distribution. The ratio of the plasma frequency to the electron gyrofrequency ω
pe/Ωce is set to 0.25, adequate for solar active region conditions. As a main result, we obtain strong emissions at the second-harmonic X mode (X2). While the fundamental X mode (X1) and the Z mode are amplified directly via the electron cyclotron maser instability, the X2 emissions can be produced by nonlinear coalescence between two Z modes and between Z and X1 modes. This represents a novel generation mechanism for the harmonic emissions in plasmas with a low value of ω
pe/Ωce, which may resolve the escaping difficulty of explaining solar radio emissions with the ECME mechanism.
Funder
National Natural Science Foundation of China
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献