Abstract
Abstract
Understanding the collisional behavior of dust aggregates is essential in the context of planet formation. It is known that low-velocity collisions of dust aggregates result in bouncing rather than sticking when the filling factor of colliding dust aggregates is higher than a threshold value. However, a large discrepancy between numerical and experimental results on the threshold filling factor was reported so far. In this study, we perform numerical simulations using soft-sphere discrete element methods and demonstrate that the sticking probability decreases with increasing aggregate radius. Our results suggest that the large discrepancy in the threshold filling factor may reflect the difference in the size of dust aggregates in earlier numerical simulations and laboratory experiments.
Funder
MEXT ∣ Japan Society for the Promotion of Science
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献