Magnetic Reconnection in Black Hole Magnetospheres: Lepton Loading into Jets, Superluminal Radio Blobs, and Multiwavelength Flares

Author:

Kimura Shigeo S.ORCID,Toma KenjiORCID,Noda HirofumiORCID,Hada KazuhiroORCID

Abstract

Abstract Supermassive black holes in active galactic nuclei launch relativistic jets, as indicated by observed superluminal radio blobs. The energy source of these jets is widely discussed in the theoretical framework of the Blandford–Znajek process, the electromagnetic energy extraction from rotating black holes (BHs), while the formation mechanism of the radio blobs in the electromagnetically dominated jets has been a long-standing problem. Recent high-resolution magnetohydrodynamic simulations of magnetically arrested disks exhibited magnetic reconnection in a transient magnetically dominated part of the equatorial disk near the BH horizon, which led to a promising scenario of efficient MeV gamma-ray production and subsequent electron–positron pair loading into the BH magnetosphere. We develop this scenario to build a theoretical framework on energetics, timescales, and particle number density of the superluminal radio blobs and discuss observable signatures in other wave bands. We analytically show that the nonthermal electrons emit broadband photons from optical to multi-MeV bands. The electron–positron pairs produced in the magnetosphere are optically thick for synchrotron self-absorption, so that the injected energy is stored in the plasma. The stored energy is enough to power the superluminal radio blobs observed in M87. This scenario predicts rather dim radio blobs around Sgr A*, which are consistent with no clear detection by current facilities. In addition, this scenario inevitably produces strong X-ray flares in a short timescale, which will be detectable by future X-ray satellites.

Funder

MEXT ∣ Japan Society for the Promotion of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3