Abstract
Abstract
The physical connection between thermal convection in the solar interior and the solar wind remains unclear due to their significant scale separation. Using an extended version of the three-dimensional radiative magnetohydrodynamic code RAMENS, we perform the first comprehensive simulation of the solar wind formation, starting from the wave excitation and the small-scale dynamo below the photosphere. The simulation satisfies various observational constraints as a slow solar wind emanating from the coronal hole boundary. The magnetic energy is persistently released in the simulated corona, showing a hot upward flow at the interface between open and closed fields. To evaluate the energetic contributions from Alfvén wave and interchange reconnection, we develop a new method to quantify the cross-field energy transport in the simulated atmosphere. The measured energy transport from closed coronal loops to open field accounts for approximately half of the total. These findings suggest a significant role of the supergranular-scale interchange reconnection in solar wind formation.
Funder
MEXT ∣ Japan Society for the Promotion of Science
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献