Abstract
Abstract
C-complex asteroids, rich in carbonaceous materials, are potential sources of Earth’s volatile inventories. They are spectrally dark resembling primitive carbonaceous meteorites, and thus, C-complex asteroids are thought to be potential parent bodies of carbonaceous meteorites. However, the substantial number of C-complex asteroids exhibits surface spectra with weaker hydroxyl absorption than water-rich carbonaceous meteorites. Rather, they best correspond to meteorites showing evidence for dehydration, commonly attributed to impact heating. Here, we report an old radiometric age of 4564.7 million years ago for Ca carbonates from the Jbilet Winselwan meteorite analogous to dehydrated C-complex asteroids. The carbonates are enclosed by a high-temperature polymorph of Ca sulfates, suggesting thermal metamorphism at >300°C subsequently after aqueous alteration. This old age indicates the early onset of aqueous alteration and subsequent thermal metamorphism driven by the decay of short-lived radionuclides rather than impact heating. The breakup of original asteroids internally heated by radioactivity should result in asteroid families predominantly consisting of thermally metamorphosed materials. This explains the common occurrence of dehydrated C-complex asteroids.
Funder
MEXT ∣ Japan Society for the Promotion of Science
National Institute of Polar Research
MEXT ∣ National Institute for Materials Science
MEXT ∣ National Institutes of Natural Sciences
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献