Hydrothermal Activities on C-Complex Asteroids Induced by Radioactivity

Author:

Fujiya WataruORCID,Higashi Hisato,Hibiya Yuki,Sugawara Shingo,Yamaguchi Akira,Kimura Makoto,Hashizume KoORCID

Abstract

Abstract C-complex asteroids, rich in carbonaceous materials, are potential sources of Earth’s volatile inventories. They are spectrally dark resembling primitive carbonaceous meteorites, and thus, C-complex asteroids are thought to be potential parent bodies of carbonaceous meteorites. However, the substantial number of C-complex asteroids exhibits surface spectra with weaker hydroxyl absorption than water-rich carbonaceous meteorites. Rather, they best correspond to meteorites showing evidence for dehydration, commonly attributed to impact heating. Here, we report an old radiometric age of 4564.7 million years ago for Ca carbonates from the Jbilet Winselwan meteorite analogous to dehydrated C-complex asteroids. The carbonates are enclosed by a high-temperature polymorph of Ca sulfates, suggesting thermal metamorphism at >300°C subsequently after aqueous alteration. This old age indicates the early onset of aqueous alteration and subsequent thermal metamorphism driven by the decay of short-lived radionuclides rather than impact heating. The breakup of original asteroids internally heated by radioactivity should result in asteroid families predominantly consisting of thermally metamorphosed materials. This explains the common occurrence of dehydrated C-complex asteroids.

Funder

MEXT ∣ Japan Society for the Promotion of Science

National Institute of Polar Research

MEXT ∣ National Institute for Materials Science

MEXT ∣ National Institutes of Natural Sciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3