Spectral Variance in a Stochastic Gravitational-wave Background from a Binary Population

Author:

Lamb William G.ORCID,Taylor Stephen R.ORCID

Abstract

Abstract A population of compact object binaries emitting gravitational waves that are not individually resolvable will form a stochastic gravitational-wave signal. While the expected spectrum over population realizations is well known from Phinney, its higher-order moments have not been fully studied before or computed in the case of arbitrary binary evolution. We calculate analytic scaling relationships as a function of gravitational-wave frequency for the statistical variance, skewness, and kurtosis of a stochastic gravitational-wave signal over population realizations due to finite source effects. If the time derivative of the binary orbital frequency can be expressed as a power law in frequency, we find that these moment quantities also take the form of power-law relationships. We also develop a numerical population synthesis framework against which we compare our analytic results, finding excellent agreement. These new scaling relationships provide physical context to understanding spectral fluctuations in a gravitational-wave background signal and may provide additional information that can aid in explaining the origin of the nanohertz-frequency signal observed by pulsar timing array campaigns.

Funder

National Science Foundation

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3