Kinetic Features of Alpha Particles in a Pestchek-like Magnetic Reconnection Event in the Solar Wind Observed by Solar Orbiter

Author:

Duan DieORCID,He JiansenORCID,Zhu XingyuORCID,Zhuo RuiORCID,Wu ZiqiORCID,Nicolaou GeorgiosORCID,Huang JiaORCID,Verscharen DanielORCID,Yang LiuORCID,Owen Christopher J.ORCID,Fedorov AndreyORCID,Louarn Philippe,Horbury Timothy S.ORCID

Abstract

Abstract The acceleration and heating of solar wind particles by magnetic reconnection are important mechanisms in space physics. Although alpha particles (4He2+) are the second most abundant population of solar wind ions, their kinetic behavior in solar wind magnetic reconnection is not well understood. Using the high-energy (1500–3000 eV) range of the Solar Wind Analyser/Proton–Alpha Sensor instrument on board Solar Orbiter, we study the kinetic features of alpha particles in an exhaust region of a Pestchek-like solar-wind reconnection event with a weak guide field. A pair of back-to-back compound discontinuities is observed in the exhaust region. We find that the plasma in the magnetic exhaust region is heated and bounded by slow shocks (SSs), while the accelerated reconnection jet is bounded by rotational discontinuities (RDs). The SSs are outside the RDs, which is not expected from the magnetohydrodynamical prediction. We suggest this different location of the discontinuities is due to the enhanced parallel temperature T p > T p, which reduces the local Alfvén speed in the exhaust region, allowing the SSs to propagate faster than the RDs. Inside the exhaust region, the guide field is dominant. We find a two-population distribution of the alpha particles. These two populations are field aligned downstream the SSs and shift to have a perpendicular offset in the reconnection jet, suggesting that the change of the magnetic field at the RDs has similar timescales with the proton gyroperiod, but faster than those of the alpha particles, such that the alpha particles behave like pickup ions.

Funder

MOST ∣ National Key Research and Development Program of China

MOST ∣ National Natural Science Foundation of China

China National Space Administration

UKRI ∣ Science and Technology Facilities Council

China Postdoctoral Science Foundation

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3