Dynamical Tides in Jupiter as Revealed by Juno

Author:

Idini BenjaminORCID,Stevenson David J.ORCID

Abstract

Abstract The Juno orbiter has continued to collect data on Jupiter's gravity field with unprecedented precision since 2016, recently reporting a nonhydrostatic component in the tidal response of the planet. At the mid-mission perijove 17, Juno registered a Love number k 2 = 0.565 ± 0.006 that is −4% ± 1% (1σ) from the theoretical hydrostatic k 2 ( hs ) = 0.590 . Here we assess whether the aforementioned departure of tides from hydrostatic equilibrium represents the neglected gravitational contribution of dynamical tides. We employ perturbation theory and simple tidal models to calculate a fractional dynamical correction Δk 2 to the well-known hydrostatic k 2. Exploiting the analytical simplicity of a toy uniform-density model, we show how the Coriolis acceleration motivates the negative sign in the Δk 2 observed by Juno. By simplifying Jupiter’s interior into a coreless, fully convective, and chemically homogeneous body, we calculate Δk 2 in a model following an n = 1 polytrope equation of state. Our numerical results for the n = 1 polytrope qualitatively follow the behavior of the uniform-density model, mostly because the main component of the tidal flow is similar in each case. Our results indicate that the gravitational effect of the Io-induced dynamical tide leads to Δk 2 = − 4% ± 1%, in agreement with the nonhydrostatic component reported by Juno. Consequently, our results suggest that Juno obtained the first unambiguous detection of the gravitational effect of dynamical tides in a gas giant planet. These results facilitate a future interpretation of Juno tidal gravity data with the purpose of elucidating the existence of a dilute core in Jupiter.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3