The Coma Dust of Comet C/2013 US10 (Catalina): A Window into Carbon in the Solar System

Author:

Woodward Charles E.ORCID,Wooden Diane H.ORCID,Harker David E.ORCID,Kelley Michael S. P.ORCID,Russell Ray W.,Kim Daryl L.

Abstract

Abstract Comet C/2013 US10 (Catalina) was a dynamically new Oort cloud comet whose apparition presented a favorable geometry for observations near close-Earth approach (≃0.93 au) at heliocentric distances ≲2 au when insolation and sublimation of volatiles drive maximum activity. Here we present mid-infrared 6.0 ≲ λ(μm) ≲ 40 spectrophotometric observations at two temporal epochs from NASA’s Stratospheric Observatory for Infrared Astronomy and the NASA Infrared Telescope Facility that yield an inventory of the refractory materials and their physical characteristics through thermal modeling analysis. The grain composition is dominated by dark dust grains (modeled as amorphous carbon) with a silicate-to-carbon ratio ≲0.9, little crystalline stoichiometry (no distinct 11.2 μm feature attributed to Mg-rich crystalline olivine), and the submicron grain-size distribution peaking at ≃0.6 μm. The 10 μm silicate feature was weak, ≈12.8% ± 0.1% above the local continuum, and the bolometric grain albedo was low (≲14%). Comet C/2013 US10 (Catalina) is a carbon-rich object. This material, which is well represented by the optical constants of amorphous carbon, is similar to the material that darkens and reddens the surface of comet 67P/Churyumov–Gerasimenko. We argue this material is endemic to the nuclei of comets, synthesizing results from the study of Stardust samples, interplanetary dust particle investigations, and micrometeoritic analyses. The atomic carbon-to-silicate ratio of comet C/2013 US10 (Catalina) and other comets joins a growing body of evidence suggesting the existence of a C/Si gradient in the primitive solar system, providing new insight into planetesimal formation and the distribution of isotopic and compositional gradients extant today.

Funder

NASA PAST

USRA/NASA SOFIA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3