Using VIRTIS on Venus Express to Constrain the Properties of the Giant Dark Cloud Observed in Images of Venus by IR2 on Akatsuki

Author:

McGouldrick KevinORCID,Peralta JavierORCID,Barstow Joanna K.ORCID,Tsang Constantine C. C.

Abstract

Abstract A cloud opacity contrast feature that has been called a “long-lived sharp disruption” has been seen in the atmosphere of Venus in the near-infrared using Akatsuki’s IR2 camera, most clearly at equatorial latitudes. This feature was found to have a consistent planet-circling period of 4.9 days, and subsequent searches of past imagery revealed that it has probably existed for at least 30 years, the duration of near-infrared investigation of the deep atmosphere of Venus. Guided by the remarkably consistent morphological appearance of this feature, we have identified at least one previous instance of it in the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) data. We take advantage of the spectroscopic capabilities of VIRTIS to retrieve atmospheric parameters in the vicinity of this feature that cannot be retrieved using the limited filter selection on board Akatsuki. We find that the changes in measurable quantities, such as cloud particle acid mass fraction, water vapor, carbon monoxide, cloud base altitude, and particle size, suggest that the changes that take place in the vicinity of this feature are restricted to the lower clouds of Venus (below 50 km). We hypothesize that further evolution of this feature (over timescales of days to weeks) results in measurable variations in these parameters at altitudes in the middle clouds of Venus (50–57 km), lending credence to its identification as a baroclinic trough or Kelvin front.

Funder

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Three‐Dimensional Venus Cloud Structure Simulated by a General Circulation Model;Journal of Geophysical Research: Planets;2024-07

2. Venus cloud discontinuity in 2022;Astronomy & Astrophysics;2023-03-28

3. The Influence of Cloud Condensation Nucleus Coagulation on the Venus Cloud Structure;The Planetary Science Journal;2023-03-01

4. Vertical‐Wind‐Induced Cloud Opacity Variation in Low Latitudes Simulated by a Venus GCM;Journal of Geophysical Research: Planets;2023-02

5. A fast, semi-analytical model for the Venusian binary cloud system;Monthly Notices of the Royal Astronomical Society;2022-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3