Improved Dynamical Masses for Six Brown Dwarf Companions Using Hipparcos and Gaia EDR3

Author:

Brandt G. MirekORCID,Dupuy Trent J.ORCID,Li YitingORCID,Chen Minghan,Brandt Timothy D.ORCID,Wong Tin Long SunnyORCID,Currie ThayneORCID,Bowler Brendan P.ORCID,Liu Michael C.ORCID,Best William M. J.ORCID,Phillips Mark W.ORCID

Abstract

Abstract We present comprehensive orbital analyses and dynamical masses for the substellar companions Gl 229 B, Gl 758 B, HD 13724 B, HD 19467 B, HD 33632 Ab, and HD 72946 B. Our dynamical fits incorporate radial velocities, relative astrometry, and, most importantly, calibrated Hipparcos-Gaia EDR3 accelerations. For HD 33632 A and HD 72946 we perform three-body fits that account for their outer stellar companions. We present new relative astrometry of Gl 229 B with Keck/NIRC2, extending its observed baseline to 25 yr. We obtain a <1% mass measurement of 71.4 ± 0.6 M Jup for the first T dwarf Gl 229 B and a 1.2% mass measurement of its host star (0.579 ± 0.007 M ) that agrees with the high-mass end of the M-dwarf mass–luminosity relation. We perform a homogeneous analysis of the host stars’ ages and use them, along with the companions’ measured masses and luminosities, to test substellar evolutionary models. Gl 229 B is the most discrepant, as models predict that an object this massive cannot cool to such a low luminosity within a Hubble time, implying that it may be an unresolved binary. The other companions are generally consistent with models, except for HD 13724 B, which has a host star activity age 3.8σ older than its substellar cooling age. Examining our results in context with other mass–age–luminosity benchmarks, we find no trend with spectral type but instead note that younger or lower-mass brown dwarfs are overluminous compared to models, while older or higher-mass brown dwarfs are underluminous. The presented mass measurements for some companions are so precise that the stellar host ages, not the masses, limit the analysis.

Funder

National Science Foundation

NASA Exoplanet Research Program

NASA, grant

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3