Abstract
Abstract
The orbits of trans-Neptunian objects (TNOs) can indicate the existence of an undiscovered planet in the outer solar system. Here we used N-body computer simulations to investigate the effects of a hypothetical Kuiper Belt planet (KBP) on the orbital structure of TNOs in the distant Kuiper Belt beyond ∼50 au. We used observations to constrain model results, including the well-characterized Outer Solar System Origins Survey (OSSOS). We determined that an Earth-like planet (m ∼ 1.5–3 M
⊕) located on a distant (semimajor axis a ∼ 250–500 au, perihelion q ∼ 200 au) and inclined (i ∼ 30°) orbit can explain three fundamental properties of the distant Kuiper Belt: a prominent population of TNOs with orbits beyond Neptune’s gravitational influence (i.e., detached objects with q > 40 au), a significant population of high-i objects (i > 45°), and the existence of some extreme objects with peculiar orbits (e.g., Sedna). Furthermore, the proposed KBP is compatible with the existence of identified gigayear-stable TNOs in the 2:1, 5:2, 3:1, 4:1, 5:1, and 6:1 Neptunian mean motion resonances. These stable populations are often neglected in other studies. We predict the existence of an Earth-like planet and several TNOs on peculiar orbits in the outer solar system, which can serve as observationally testable signatures of the putative planet’s perturbations.
Funder
MEXT ∣ Japan Society for the Promotion of Science
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献