A Novel Machine Learning Approach to Disentangle Multitemperature Regions in Galaxy Clusters

Author:

Rhea CarterORCID,Hlavacek-Larrondo JulieORCID,Perreault-Levasseur Laurence,Gendron-Marsolais Marie-LouORCID,Kraft RalphORCID

Abstract

Abstract The hot intracluster medium (ICM) surrounding the heart of galaxy clusters is a complex medium that comprises various emitting components. Although previous studies of nearby galaxy clusters, such as the Perseus, the Coma, or the Virgo cluster, have demonstrated the need for multiple thermal components when spectroscopically fitting the ICM’s X-ray emission, no systematic methodology for calculating the number of underlying components currently exists. In turn, underestimating or overestimating the number of components can cause systematic errors in the emission parameter estimations. In this paper, we present a novel approach to determining the number of components using an amalgam of machine learning techniques. Synthetic spectra containing a various number of underlying thermal components were created using well-established tools available from the Chandra X-ray Observatory. The dimensions of the training set was initially reduced using principal component analysis and then categorized based on the number of underlying components using a random forest classifier. Our trained and tested algorithm was subsequently applied to Chandra X-ray observations of the Perseus cluster. Our results demonstrate that machine learning techniques can efficiently and reliably estimate the number of underlying thermal components in the spectra of galaxy clusters, regardless of the thermal model (MEKAL versus APEC). We also confirm that the core of the Perseus cluster contains a mix of differing underlying thermal components. We emphasize that although this methodology was trained and applied on Chandra X-ray observations, it is readily portable to other current (e.g., XMM-Newton, eROSITA) and upcoming (e.g., Athena, Lynx, XRISM) X-ray telescopes. The code is publicly available at https://github.com/XtraAstronomy/Pumpkin.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3