Detecting Anomalous Images in Astronomical Datasets

Author:

Alonso Pedro,Zhang Jun,Li Xiao-Dong

Abstract

Abstract Environmental and instrumental conditions can cause anomalies in astronomical images, which can potentially bias all kinds of measurements if not excluded. Detection of the anomalous images is usually done by human eyes, which is slow and sometimes not accurate. This is an important issue in weak lensing studies, particularly in the era of large-scale galaxy surveys, in which image qualities are crucial for the success of galaxy shape measurements. In this work we present two automatic methods for detecting anomalous images in astronomical data sets. The anomalous features can be divided into two types: one is associated with the source images, and the other appears on the background. Our first method, called the entropy method, utilizes the randomness of the orientation distribution of the source shapes and the background gradients to quantify the likelihood of an exposure being anomalous. Our second method involves training a neural network (autoencoder) to detect anomalies. We evaluate the effectiveness of the entropy method on the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) and Dark Energy Camera Legacy Survey (DECaLS DR3) data. In CFHTLenS, with 1171 exposures, the entropy method outperforms human inspection by detecting 12 of the 13 anomalous exposures found during human inspection and uncovering 10 new ones. In DECaLS DR3, with 17112 exposures, the entropy method detects a significant number of anomalous exposures while keeping a low false-positive rate. We find that although the neural network performs relatively well in detecting source anomalies, its current performance is not as good as the entropy method.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3