A Green Bank Telescope Search for Narrowband Technosignatures between 1.1 and 1.9 GHz During 12 Kepler Planetary Transits

Author:

Sheikh Sofia Z.ORCID,Kanodia ShubhamORCID,Lubar EmilyORCID,Bowman William P.ORCID,Cañas Caleb I.ORCID,Gilbertson ChristianORCID,MacDonald Mariah G.ORCID,Wright JasonORCID,MacMahon David,Croft SteveORCID,Price DannyORCID,Siemion AndrewORCID,Drew Jamie,Worden S. Pete,Trenholm ElizabethORCID, ,

Abstract

Abstract Agrowing avenue for determining the prevalence of life beyond Earth is to search for “technosignatures” from extraterrestrial intelligences/agents. Technosignatures require significant energy to be visible across interstellar space and thus intentional signals might be concentrated in frequency, in time, or in space, to be found in mutually obvious places. Therefore, it could be advantageous to search for technosignatures in parts of parameter space that are mutually derivable to an observer on Earth and a distant transmitter. In this work, we used the L-band (1.1–1.9 GHz) receiver on the Robert C. Byrd Green Bank Telescope to perform the first technosignature search presynchronized with exoplanet transits, covering 12 Kepler systems. We used the Breakthrough Listen turboSETI pipeline to flag narrowband hits (∼3 Hz) using a maximum drift rate of ±614.4 Hz s−1 and a signal-to-noise threshold of 5—the pipeline returned ∼3.4 × 105 apparently-localized features. Visual inspection by a team of citizen scientists ruled out 99.6% of them. Further analysis found two signals of interest that warrant follow up, but no technosignatures. If the signals of interest are not redetected in future work, it will imply that the 12 targets in the search are not producing transit-aligned signals from 1.1 to 1.9 GHz with transmitter powers >60 times that of the former Arecibo radar. This search debuts a range of innovative technosignature techniques: citizen science vetting of potential signals of interest, a sensitivity-aware search out to extremely high drift rates, a more flexible method of analyzing on-off cadences, and an extremely low signal-to-noise threshold.

Funder

Breakthrough Prize Foundation

Penn State Extraterrestrial Intelligence Center

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3