Spectroscopic Confirmation of Obscured AGN Populations from Unsupervised Machine Learning

Author:

Hviding Raphael E.ORCID,Hainline Kevin N.ORCID,Goulding Andy D.ORCID,Greene Jenny E.ORCID

Abstract

Abstract We present the result of a spectroscopic campaign targeting active galactic nucleus (AGN) candidates selected using a novel unsupervised machine-learning (ML) algorithm trained on optical and mid-infrared photometry. AGN candidates are chosen without incorporating prior AGN selection criteria and are fainter, redder, and more numerous, ∼340 AGN deg−2, than comparable photometric and spectroscopic samples. In this work, we obtain 178 rest-optical spectra from two candidate ML-identified AGN classes with the Hectospec spectrograph on the MMT Observatory. We find that our first ML-identified group is dominated by Type I AGNs (85%) with a <3% contamination rate from non-AGNs. Our second ML-identified group is mostly comprised of Type II AGNs (65%), with a moderate contamination rate of 15% primarily from star-forming galaxies. Our spectroscopic analyses suggest that the classes recover more obscured AGNs, confirming that ML techniques are effective at recovering large populations of AGNs at high levels of extinction. We demonstrate the efficacy of pairing existing WISE data with large-area and deep optical/near-infrared photometric surveys to select large populations of AGNs and recover obscured growth of supermassive black holes. This approach is well suited to upcoming photometric surveys, such as Euclid, Rubin, and Roman.

Funder

NSF ∣ National Science Foundation Graduate Research Fellowship Program

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3