NEOWISE Observations of Distant Active Long-period Comets C/2014 B1 (Schwartz), C/2017 K2 (Pan-STARRS), and C/2010 U3 (Boattini)

Author:

Milewski Dave G.ORCID,Masiero Joseph R.ORCID,Pittichová JanaORCID,Kramer Emily A.ORCID,Mainzer Amy K.ORCID,Bauer James M.ORCID

Abstract

Abstract Hyperactive comet activity typically becomes evident beyond the frost line (∼3–4 au) where it becomes too cold for water-ice to sublimate. If carbon monoxide (CO) and carbon dioxide (CO2) are the species that drive activity at sufficiently large distances, then detailed studies on the production rates of these species are extremely valuable to examine the formation of the solar system because these two species (beyond water) are next culpable for driving cometary activity. The NEOWISE reactivated mission operates at two imaging bandpasses, W1 and W2 at 3.4 μm and 4.6 μm, respectively, with the W2 channel being fully capable of detecting CO and CO2 at 4.67 μm and 4.23 μm in the same bandpass. It is extremely difficult to study CO2 from the ground due to contamination in Earth’s atmosphere. We present our W1 and W2 photometry, dust measurements, and findings for comets C/2014 B1 (Schwartz), C/2017 K2 (Pan-STARRS), and C/2010 U3 (Boattini), hereafter, B1, K2, and U3, respectively. Our results assess CO and CO2 gas production rates observed by NEOWISE. We have determined: (1) comets B1 and K2 have CO2 and CO gas production rates of ∼1027 and ∼1029 molecules s−1, respectively, if one assumes the excess emission is attributed to either all CO or all CO2; (2) B1 and K2 are considered hyperactive in that their measured Af ρ dust production values are on the order of ≳103 cm; and (3) the CO and CO2 production rates do not always follow the expected convention of increasing with decreased heliocentric distance, while B1 and K2 exhibit noticeable dust activity on their inbound leg orbits.

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3