Origins of Chiral Life in Interstellar Molecular Clouds

Author:

Valković VladoORCID,Obhođaš JasminaORCID

Abstract

Abstract The exploring of galactic chemical composition across the the Milky Way, and specifically across the solar neighborhood, provides insights into the chemical evolution of the universe. Since the formation of the first stars some hundred million years after the big bang (BB), heavier elements are synthesized in different stellar production processes at the expense of lighter elements. When the relative abundances of the life-forming elements evaluated for the Last Universal Common Ancestor (LUCA) are compared with the solar neighborhood stellar abundances, a striking similarity occurs. In this study, we tested the hypothesis that in some particular regions and at some particular time, the abundance curve of the first living matter and the universe coincided. Indeed, the best agreement between the two curves was obtained for (4 ± 1)× 109 yr after the BB, indicating the time of the origin of life. All organisms evolved on the Earth independently of place and time are leading to the LUCA and involve chiral molecules such as L amino acids and D sugars in fundamental life processes. The growing evidence from carbonaceous meteorites analysis shows an excess of L-type amino acids and D-type sugars, suggesting that the increase in L-type or D-type molecular chirality is the process that takes place in planetary and stellar forming systems, thus the life emerging from interstellar molecular clouds (IMCs) had to be chiral. Here we propose the spin-polarized proton–proton scattering as a potential physical process that takes place in IMCs environments and could lead to enrichment of L-type amino acids and D-type sugars.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3