Magnitude-squared Coherence: A Powerful Tool for Disentangling Doppler Planet Discoveries from Stellar Activity

Author:

Dodson-Robinson Sarah E.ORCID,Delgado Victor RamirezORCID,Harrell Justin,Haley Charlotte L.ORCID

Abstract

Abstract If Doppler searches for Earth-mass, habitable planets are to succeed, observers must be able to identify and model out stellar activity signals. Here we demonstrate how to diagnose activity signals by calculating the magnitude-squared coherence C ˆ xy 2 ( f ) between an activity-indicator time series x t and the radial-velocity (RV) time series y t . Since planets only cause modulation in RV, not in activity indicators, a high value of C ˆ xy 2 ( f ) indicates that the signal at frequency f has a stellar origin. We use Welch’s method to measure coherence between activity indicators and RVs in archival observations of GJ 581, α Cen B, and GJ 3998. High RV-Hα coherence at the frequency of GJ 3998 b and high RV-S index coherence at the frequency of GJ 3998c, indicate that the planets may actually be stellar signals. We also replicate previous results showing that GJ 581 d and g are rotation harmonics and demonstrate that α Cen B has activity signals that are not associated with rotation. Welch’s power spectrum estimates have cleaner spectral windows than Lomb–Scargle periodograms, improving our ability to estimate rotation periods. We find that the rotation period of GJ 581 is 132 days, with no evidence of differential rotation. Welch’s method may yield unacceptably large bias for data sets with N < 75 observations and works best on data sets with N > 100. Tapering the time-domain data can reduce the bias of the Welch’s power spectrum estimator, but observers should not apply tapers to data sets with extremely uneven observing cadence. A software package for calculating magnitude-squared coherence and Welch’s power spectrum estimates is available on github.

Funder

U.S. Department of Energy

Bartol Research Institute

UNIDEL Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3