A Blind Search for Transit Depth Variability with TESS

Author:

Wang GavinORCID,Espinoza NéstorORCID

Abstract

Abstract The phenomenon of transit depth variability offers a pathway through which processes such as exoplanet atmospheric activity and orbital dynamics can be studied. In this work we conduct a blind search for transit depth variations among 330 known planets observed by the Transiting Exoplanet Survey Satellite within its first four years of operation. Through an automated periodogram analysis, we identify four targets (KELT-8b, HAT-P-7b, HIP 65 Ab, and TrES-3b) that appear to show significant transit depth variability. We find that KELT-8b’s transit depth variability likely comes from contaminating flux from a nearby star, while the apparent variabilities of HIP 65 Ab and TrES-3b are probable artifacts due to their grazing orbits. HAT-P-7b indicates signs of variability that possibly originate from the planet or its host star. A population-level analysis does not reveal any significant correlation between transit depth variability and the effective temperature and mass of the host star; such correlation could arise if stellar activity was the cause of depth variations via the transit light source effect. Extrapolating our ∼1% detection rate to the upcoming Roman mission, predicted to yield of order 100,000 transiting planets, we expect that ∼1000 of these targets will be found to exhibit significant transit depth variability.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3