Flux Calibration of CHIME/FRB Intensity Data

Author:

Andersen Bridget C.ORCID,Patel ChitrangORCID,Brar CharanjotORCID,Boyle P. J.ORCID,Fonseca EmmanuelORCID,Kaspi Victoria M.ORCID,Masui Kiyoshi W.ORCID,Mena-Parra JuanORCID,Merryfield MarcusORCID,Meyers Bradley W.ORCID,Sand Ketan R.ORCID,Scholz PaulORCID,Siegel Seth R.ORCID,Singh SaurabhORCID

Abstract

Abstract Fast radio bursts (FRBs) are bright radio transients of microsecond to millisecond duration and unknown extragalactic origin. Central to the mystery of FRBs are their extremely high characteristic energies, which surpass the typical energies of other radio transients of similar duration, like Galactic pulsar and magnetar bursts, by orders of magnitude. Calibration of FRB-detecting telescopes for burst flux and fluence determination is crucial for FRB science, as these measurements enable studies of the FRB energy and brightness distribution in comparison to progenitor theories. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a radio interferometer of cylindrical design. This design leads to a high FRB detection rate but also leads to challenges for CHIME/FRB flux calibration. This paper presents a comprehensive review of these challenges, as well as the automated flux calibration software pipeline that was developed to calibrate bursts detected in the first CHIME/FRB catalog, consisting of 536 events detected between 2018 July 25 and 2019 July 1. We emphasize that, due to limitations in the localization of CHIME/FRB bursts, flux and fluence measurements produced by this pipeline are best interpreted as lower limits, with uncertainties on the limiting value.

Funder

Canada Foundation for Innovation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3