Abstract
Abstract
Efforts with extreme-precision radial velocity (EPRV) instruments to detect small-amplitude planets are largely limited, on many timescales, by the effects of stellar variability and instrumental systematics. One avenue for investigating these effects is the use of small solar telescopes which direct disk-integrated sunlight to these EPRV instruments, observing the Sun at high cadence over months or years. We have designed and built a solar feed system to carry out “Sun-as-a-star” observations with NEID, a very high precision Doppler spectrometer recently commissioned at the WIYN 3.5 m Telescope at Kitt Peak National Observatory. The NEID solar feed has been taking observations nearly every day since 2020 December; data is publicly available at the NASA Exoplanet Science Institute NEID Solar Archive: https://neid.ipac.caltech.edu/search_solar.php. In this paper, we present the design of the NEID solar feed and explanations behind our design intent. We also present early radial velocity (RV) results which demonstrate NEID’s RV stability on the Sun over 4 months of commissioning: 0.66 m s−1 rms under good sky conditions and improving to 0.41 m s−1 rms under best conditions.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献