Zeta-Payne: A Fully Automated Spectrum Analysis Algorithm for the Milky Way Mapper Program of the SDSS-V Survey

Author:

Straumit IlyaORCID,Tkachenko Andrew,Gebruers Sarah,Audenaert JeroenORCID,Xiang MaoshengORCID,Zari Eleonora,Aerts ConnyORCID,Johnson Jennifer A.ORCID,Kollmeier Juna A.ORCID,Rix Hans-WalterORCID,Beaton Rachael L.ORCID,Van Saders Jennifer L.ORCID,Teske Johanna,Roman-Lopes AlexandreORCID,Ting Yuan-SenORCID,Román-Zúñiga Carlos G.ORCID

Abstract

Abstract The Sloan Digital Sky Survey (SDSS) has recently initiated its fifth survey generation (SDSS-V), with a central focus on stellar spectroscopy. In particular, SDSS-V's Milky Way Mapper program will deliver multiepoch optical and near-infrared spectra for more than 5 × 106 stars across the entire sky, covering a large range in stellar mass, surface temperature, evolutionary stage, and age. About 10% of those spectra will be of hot stars of OBAF spectral types, for whose analysis no established survey pipelines exist. Here we present the spectral analysis algorithm, ZETA-PAYNE, developed specifically to obtain stellar labels from SDSS-V spectra of stars with these spectral types and drawing on machine-learning tools. We provide details of the algorithm training, its test on artificial spectra, and its validation on two control samples of real stars. Analysis with ZETA-PAYNE leads to only modest internal uncertainties in the near-IR with APOGEE (optical with BOSS): 3%–10% (1%–2%) for T eff, 5%–30% (5%–25%) for v sin i , 1.7–6.3 km s−1 (0.7–2.2 km s−1) for radial velocity, <0.1 dex (<0.05 dex) for log g , and 0.4–0.5 dex (0.1 dex) for [M/H] of the star, respectively. We find a good agreement between atmospheric parameters of OBAF-type stars when inferred from their high- and low-resolution optical spectra. For most stellar labels, the APOGEE spectra are (far) less informative than the BOSS spectra of these stars, while log g , v sin i , and [M/H] are in most cases too uncertain for meaningful astrophysical interpretation. This makes BOSS low-resolution optical spectra better for stellar labels of OBAF-type stars, unless the latter are subject to high levels of extinction.

Funder

EC ∣ European Research Council

KU Leuven Research Council

Research Foundation Flanders

Belgian Federal Science Policy Office

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3