Planet Eclipse Mapping with Long-term Baseline Drifts

Author:

Schlawin EverettORCID,Challener RyanORCID,Mansfield MeganORCID,Rauscher EmilyORCID,Adams ArthurORCID,Lustig-Yaeger JacobORCID

Abstract

Abstract High-precision lightcurves combined with eclipse-mapping techniques can reveal the horizontal and vertical structure of a planet’s thermal emission and the dynamics of hot Jupiters. Someday, they even may reveal the surface maps of rocky planets. However, inverting lightcurves into maps requires an understanding of the planet, star, and instrumental trends because they can resemble the gradual flux variations as the planet rotates (i.e., partial phase curves). In this work, we simulate lightcurves with baseline trends and assess the impact on planet maps. Baseline trends can be erroneously modeled by incorrect astrophysical planet map features, but there are clues to avoid this pitfall in both the residuals of the lightcurve during eclipse and sharp features at the terminator of the planet. Models that use a Gaussian process or polynomial to account for a baseline trend successfully recover the input map even in the presence of systematics but with worse precision for the m = 1 spherical harmonic terms. This is also confirmed with the ThERESA eigencurve method where fewer lightcurve terms can model the planet without correlations between the components. These conclusions help aid the decision on how to schedule observations to improve map precision. If the m = 1 components are critical, such as measuring the east/west hot-spot shift on a hot Jupiter, better characterization of baseline trends can improve the m = 1 terms’ precision. For latitudinal north/south information from m ≠ 1 mapping terms, it is preferable to obtain high signal to noise at ingress/egress with more eclipses.

Funder

NASA ∣ Goddard Space Flight Center

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3