Abstract
Abstract
We present Korg, a new package for 1D LTE spectral synthesis of FGK stars, which computes theoretical spectra from the near-ultraviolet to the near-infrared, and implements both plane-parallel and spherical radiative transfer. We outline the inputs and internals of Korg, and compare synthetic spectra from Korg, Moog, Turbospectrum, and SME. The disagreements between Korg and the other codes are no larger than those between the other codes, although disagreement between codes is substantial. We examine the case of a C2 band in detail, finding that uncertainties on physical inputs to spectral synthesis account for a significant fraction of the disagreement. Korg is 1–100 times faster than other codes in typical use, compatible with automatic differentiation libraries, and easily extensible, making it ideal for statistical inference and parameter estimation applied to large data sets. Documentation and installation instructions are available at https://ajwheeler.github.io/Korg.jl/stable/.
Funder
National Science Foundation
Australian Research Council
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献