MagAO-X and HST High-contrast Imaging of the AS209 Disk at Hα

Author:

Cugno GabrieleORCID,Zhou YifanORCID,Thanathibodee ThanawuthORCID,Calissendorff PerORCID,Meyer Michael R.ORCID,Edwards SuzanORCID,Bae JaehanORCID,Benisty MyriamORCID,Bergin EdwinORCID,De Furio MatthewORCID,Facchini StefanoORCID,Males Jared R.ORCID,Close Laird M.ORCID,Teague Richard D.ORCID,Guyon OlivierORCID,Haffert Sebastiaan Y.ORCID,Hedglen Alexander D.,Kautz Maggie,Izquierdo AndrésORCID,Long Joseph D.ORCID,Lumbres Jennifer,McLeod Avalon L.,Pearce Logan A.ORCID,Schatz Lauren,Van Gorkom Kyle

Abstract

Abstract The detection of emission lines associated with accretion processes is a direct method for studying how and where gas giant planets form, how young planets interact with their natal protoplanetary disk, and how volatile delivery to their atmosphere takes place. Hα (λ = 0.656 μm) is expected to be the strongest accretion line observable from the ground with adaptive optics systems, and is therefore the target of specific high-contrast imaging campaigns. We present MagAO-X and Hubble Space Telescope (HST) data obtained to search for Hα emission from the previously detected protoplanet candidate orbiting AS209, identified through Atacama Large Millimeter/submillimeter Array observations. No signal was detected at the location of the candidate, and we provide limits on its accretion. Our data would have detected an Hα emission with F Hα > 2.5 ± 0.3 × 10−16 erg s−1 cm−2, a factor 6.5 lower than the HST flux measured for PDS70 b. The flux limit indicates that if the protoplanet is currently accreting it is likely that local extinction from circumstellar and circumplanetary material strongly attenuates its emission at optical wavelengths. In addition, the data reveal the first image of the jet north of the star as expected from previous detections of forbidden lines. Finally, this work demonstrates that current ground-based observations with extreme adaptive optics systems can be more sensitive than space-based observations, paving the way to the hunt for small planets in reflected light with extremely large telescopes.

Funder

Swiss National Science Foundation

EC ∣ European Research Council

NASA Hubble Fellowship

NSF Graduate Research Fellowship

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3