Photometric and Spectroscopic Studies of V582 Lyr and V1016 Oph

Author:

Cheng Yao,Zhang Li-yun,Han Xianming L.,Long Liu,Lu Hongpeng,Yue Qiang,Jiang Linyan

Abstract

Abstract We present new CCD photometric light curves about two eclipsing binaries of V582 Lyr and V1016 Oph. Our observations were carried out by the SARA 91.4 cm telescope of America in 2016 and the 60 cm telescope of Chile in 2018. V582 Lyr’s spectra type was classified as K5, and its radial velocity was determined using the LAMOST spectral survey. There are absorptions in the observed H α line and excess emissions in the subtracted H α line, which show weak chromospheric activity. We obtained the updated ephemeris information for V582 Lr and V1016 Oph, and found that their orbital periods are both decreasing. We concluded that the decreased rate is −0.474 (±0.011) × 10−7 days yr−1 for V582 Lyr and 3.460 (±0.014) × 10−7 days yr−1 for V1016 Oph. For V582 Lyr, the period variation was interpreted as a mass transfer from the secondary component to the primary one, and the corresponding rate is dM 2/dt = −1.10 (±0.03) × 10−7 M yr−1. For V1016 Oph, we explain it by transferring from the primary component to the secondary one, and the corresponding rate is dM 1/dt = −2.69 (±0.04) × 10−7 M yr−1. The photometric solution of V1016 Oph was obtained by analyzing the CCD photometry with the Wilson–Devinney program. We also obtained the orbital parameters of V1016 Oph by simultaneously analyzing our BVRI light curves and radial-velocity curve from the LAMOST low-resolution spectral survey. Finally, our orbital solution shows that they are contact eclipsing binaries with contact factors of 3.35 (±0.08)% for V582 Lyr and 41.0 (±0.1)% for V1016 Oph.

Funder

Zhang liyun

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3