Modeling JWST MIRI-MRS Observations of T Cha: Mid-IR Noble Gas Emission Tracing a Dense Disk Wind

Author:

Sellek Andrew D.ORCID,Bajaj Naman S.ORCID,Pascucci IlariaORCID,Clarke Cathie J.,Alexander RichardORCID,Xie ChengyanORCID,Ballabio GiuliaORCID,Deng DingshanORCID,Gorti UmaORCID,Gaspar AndrasORCID,Morrison JaneORCID

Abstract

Abstract [Ne ii] 12.81 μm emission is a well-used tracer of protoplanetary disk winds due to its blueshifted line profile. Mid-Infrared Instrument (MIRI)-Medium Resolution Spectrometer (MRS) recently observed T Cha, detecting this line along with lines of [Ne iii], [Ar ii], and [Ar iii], with the [Ne ii] and [Ne iii] lines found to be extended while the [Ar ii] was not. In this complementary work, we use these lines to address long-debated questions about protoplanetary disk winds regarding their mass-loss rate, the origin of their ionization, and the role of magnetically driven winds as opposed to photoevaporation. To this end, we perform photoionization radiative transfer on simple hydrodynamic wind models to map the line emission. We compare the integrated model luminosities to those observed with MIRI-MRS to identify which models most closely reproduce the data and produce synthetic images from these to understand what information is captured by measurements of the line extents. Along with the low degree of ionization implied by the line ratios, the relative compactness of [Ar ii] compared to [Ne ii] is particularly constraining. This requires Ne ii production by hard X-rays and Ar ii production by soft X-rays (and/or EUV) in an extended (≳10 au) wind that is shielded from soft X-rays, necessitating a dense wind with material launched on scales down to ∼1 au. Such conditions could be produced by photoevaporation, whereas an extended magnetohydrodynamic (MHD) wind producing equal shielding would likely underpredict the line fluxes. However, a tenuous inner MHD wind may still contribute to shielding the extended wind. This picture is consistent with constraints from spectrally resolved line profiles.

Funder

H2020 Marie Skłodowska-Curie Actions

HORIZON EUROPE Excellent Science

UKRI ∣ Science and Technology Facilities Council

EC ∣ Horizon 2020 Framework Programme

Space Telescope Science Institute

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3