The Limited Role of the Streaming Instability during Moon and Exomoon Formation

Author:

Nakajima MikiORCID,Atkins JeremyORCID,Simon Jacob B.ORCID,Quillen Alice C.ORCID

Abstract

Abstract It is generally accepted that the Moon accreted from the disk formed by an impact between the proto-Earth and impactor, but its details are highly debated. Some models suggest that a Mars-sized impactor formed a silicate melt-rich (vapor-poor) disk around Earth, whereas other models suggest that a highly energetic impact produced a silicate vapor-rich disk. Such a vapor-rich disk, however, may not be suitable for the Moon formation, because moonlets, building blocks of the Moon, of 100 m–100 km in radius may experience strong gas drag and fall onto Earth on a short timescale, failing to grow further. This problem may be avoided if large moonlets (≫100 km) form very quickly by streaming instability, which is a process to concentrate particles enough to cause gravitational collapse and rapid formation of planetesimals or moonlets. Here, we investigate the effect of the streaming instability in the Moon-forming disk for the first time and find that this instability can quickly form ∼100 km-sized moonlets. However, these moonlets are not large enough to avoid strong drag, and they still fall onto Earth quickly. This suggests that the vapor-rich disks may not form the large Moon, and therefore the models that produce vapor-poor disks are supported. This result is applicable to general impact-induced moon-forming disks, supporting the previous suggestion that small planets (<1.6 R ) are good candidates to host large moons because their impact-induced disks would likely be vapor-poor. We find a limited role of streaming instability in satellite formation in an impact-induced disk, whereas it plays a key role during planet formation.

Funder

National Science Foundation

National Aeronautics and Space Administration

Alfred P. Sloan Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composition, structure, and origin of the Moon;Reference Module in Earth Systems and Environmental Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3