Electrostatic Repulsion of Dust from Planetary Surfaces

Author:

Onyeagusi F. ChiomaORCID,Jungmann FelixORCID,Teiser JensORCID,Wurm GerhardORCID

Abstract

Abstract Surfaces of planetary bodies can have strong electric fields, subjecting conductive grains to repulsive electrostatic forces. This has been proposed as a mechanism to eject grains from the ground. To quantify this process, we study millimeter-sized basalt aggregates consisting of micrometer constituents exposed to an electric field in drop-tower experiments. The dust aggregates acquire high charges on subsecond timescales while sticking to the electrodes according to the field polarity. Charging at the electrodes results in a repulsive (lifting) force and continues until repulsion overcomes adhesion and particles are lifted, moving toward the opposite electrode. Some aggregates remain attached, which is consistent with a maximum charge limit being reached, providing an electrostatic force too small to counteract adhesion. All observations are in agreement with a model of moderately conductive grains with a small but varying number of adhesive contacts to the electrodes. This supports the idea that on planetary surfaces with atmospheres, electrostatic repulsion can significantly contribute to airborne dust and sand, i.e., decrease the threshold wind speed that is required for saltation and increase the particle flux as suggested before.

Funder

Deutsches Zentrum für Luft- und Raumfahrt

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geophysics,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3