thornado-hydro: A Discontinuous Galerkin Method for Supernova Hydrodynamics with Nuclear Equations of State*

Author:

Pochik DavidORCID,Barker Brandon L.ORCID,Endeve EirikORCID,Buffaloe JesseORCID,Dunham Samuel J.ORCID,Roberts NickORCID,Mezzacappa AnthonyORCID

Abstract

Abstract This paper describes algorithms for nonrelativistic hydrodynamics in the toolkit for high-order neutrino radiation hydrodynamics (thornado), which is being developed for multiphysics simulations of core-collapse supernovae (CCSNe) and related problems with Runge–Kutta discontinuous Galerkin (RKDG) methods. More specifically, thornado employs a spectral-type nodal collocation approximation, and we have extended limiters—a slope limiter to prevent nonphysical oscillations and a bound-enforcing limiter to prevent nonphysical states—from the standard RKDG framework to be able to accommodate a tabulated nuclear equation of state (EoS). To demonstrate the efficacy of the algorithms with a nuclear EoS, we first present numerical results from basic test problems in idealized settings in one and two spatial dimensions, employing Cartesian, spherical-polar, and cylindrical coordinates. Then, we apply the RKDG method to the problem of adiabatic collapse, shock formation, and shock propagation in spherical symmetry, initiated with a 15 M progenitor. We find that the extended limiters improve the fidelity and robustness of the RKDG method in idealized settings. The bound-enforcing limiter improves the robustness of the RKDG method in the adiabatic collapse application, while we find that slope limiting in characteristic fields is vulnerable to structures in the EoS—more specifically, in the phase transition from nuclei and nucleons to bulk nuclear matter. The success of these applications marks an important step toward applying RKDG methods to more realistic CCSN simulations with thornado in the future.

Funder

NSF ∣ MPS ∣ Division of Physics

NSF ∣ EHR ∣ Division of Graduate Education

DOE ∣ Office of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3