Abstract
Abstract
Luminosity, which is the total amount of radiant energy emitted by an object, is one of the most critical quantities in astrophysics for characterizing stars. Equally important is the temporal evolution of a star’s luminosity because of its intimate connection with the stellar energy budget, large-scale convective motion, and heat storage in the stellar interior. The Sun’s luminosity and its variation have not been measured to date because current observations of the solar radiative output have been restricted to vantage points near the Earth. Here, we model the solar luminosity by extending a semiempirical total solar irradiance (TSI) model that uses solar-surface magnetism to reconstruct solar irradiance over the entire 4π solid angle around the Sun. This model was constrained by comparing its output to the irradiance in the Earth’s direction with the measured TSI. Comparing the solar luminosity to the TSI on timescales from days to solar cycles for cycles 23 and 24, we find poor agreement on short timescales (<solar rotation). This is not unexpected due to the Earth-centric viewing geometry and short-term irradiance dependence on surface features on the Earth-facing solar disk. On longer timescales, however, we find good agreement between the luminosity model and the TSI, which suggests that the extrapolation of luminosities to multicycle timescales based on TSI reconstructions may be possible. We show that the solar luminosity is not constant but varies in phase with the solar cycle. This variation has an amplitude of 0.14% from minimum to maximum for Solar Cycle 23. Considering the energetics in the solar convection zone, it is therefore obvious that a steady-state input from the radiative zone at the solar minimum level would lead to a gradual reduction in the energy content in the convection zone over multicentury timescales. We show that the luminosity at the base of the convection zone should be approximately 0.032% higher than that at the solar surface during solar minimum to maintain net energy equilibrium through the solar cycle. These different energy-input scenarios place constraints on the long-term evolution of the TSI and its impact on the solar forcing of climate variability. These results highlight the convection zone’s role as an energy reservoir on solar-cycle timescales and set constraints for dynamo models intending to understand the long-term evolution of the Sun and solar analogs.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献