New Fe i Level Energies and Line Identifications from Stellar Spectra. III. Initial Results from UV, Optical, and Infrared Spectra

Author:

Peterson Ruth C.ORCID,Kurucz Robert L.

Abstract

Abstract The spectrum of neutral iron is critical to astrophysics, yet furnace laboratory experiments cannot reach high-lying Fe i levels. Instead, Peterson & Kurucz and Peterson et al. adopted ultraviolet (UV) and optical spectra of warm stars to identify and assign energies for 124 Fe i levels with 1900 detectable Fe i lines, and to derive astrophysical gf values for over 1000 of these. An energy value was assumed for each unknown Fe i level, and confirmed if the wavelengths predicted in updated Kurucz Fe i calculations matched the wavelengths of four or more unidentified lines in the observed spectra. Nearly all these identifications were for LS levels, those characterized by spin–orbit coupling, whose lines fall primarily at UV and optical wavelengths. This work contributes nearly 100 new Fe i level identifications. Thirty-nine LS levels are identified largely by incorporating published positions of unidentified laboratory Fe i lines with wavelengths <2000 Å. Adding infrared (IR) spectra provided 60 Fe i jK levels, where a single outer electron orbits a compact core. Their weak IR lines are searchable, because their mutual energies obey tight relationships. For each new Fe i level, this work again makes publicly available its identification, its energy, and a list of its potentially detectable lines with theoretical gf values, totalling >16,000 lines. For over 2000 of these, this work provides astrophysical gf values adjusted semiempirically to fit the stellar spectra. The potential impact of this work on modeling UV and IR stellar spectra is noted.

Funder

NASA ∣ GSFC ∣ Astrophysics Science Division

Space Telescope Science Institute

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3