Setting the Stage for the Search for Life with the Habitable Worlds Observatory: Properties of 164 Promising Planet-survey Targets

Author:

Harada Caleb K.ORCID,Dressing Courtney D.ORCID,Kane Stephen R.ORCID,Ardestani Bahareh Adami

Abstract

Abstract The Decadal Survey on Astronomy and Astrophysics 2020 has recommended that NASA realize a large IR/optical/UV space telescope optimized for high-contrast imaging and spectroscopy of ∼25 exo-Earths and transformative general astrophysics. The NASA Exoplanet Exploration Program (ExEP) has subsequently released a list of 164 nearby (d < 25 pc) targets deemed the most accessible to survey for potentially habitable exoplanets with the Habitable Worlds Observatory (HWO). We present a catalog of system properties for the 164 ExEP targets, including 1744 abundance measurements for 14 elements from the Hypatia Catalog and 924 photometry measurements spanning from 151.6 nm to 22 μm in the GALEX, Strömgren, Tycho, Gaia, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer bandpasses. We independently derive stellar properties for these systems by modeling their spectral energy distributions with Bayesian model averaging. Additionally, by consulting the literature, we identify TESS flare rates for 46 stars, optical variability for 78 stars, and X-ray emission for 46 stars in our sample. We discuss our catalog in the context of planet habitability and draw attention to key gaps in our knowledge where precursor science can help to inform HWO mission design trade studies in the near future. Notably, only 33 of the 164 stars in our sample have reliable space-based UV measurements, and only 40 have a mid-IR measurement. We also find that phosphorus, a bioessential element, has only been measured in 11 of these stars, motivating future abundance surveys. Our catalog is publicly available and we advocate for its use in future studies of promising HWO targets.

Funder

National Aeronautics and Space Administration

NSF ∣ National Science Foundation Graduate Research Fellowship Program

Publisher

American Astronomical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3