Abstract
Abstract
Wolf–Rayet ([WR]) and weak-emission-line (wels) central stars of planetary nebulae (PNs) have hydrogen-deficient atmospheres, whose origins are not well understood. In the present study, we have conducted plasma diagnostics and abundance analyses of 18 Galactic PNs surrounding [WR] and wels nuclei, using collisionally excited lines (CELs) and optical recombination lines (ORLs) measured with the Wide Field Spectrograph on the Australian National University 2.3 m telescope at the Siding Spring Observatory complemented with optical archival data. Our plasma diagnostics imply that the electron densities and temperatures derived from CELs are correlated with the intrinsic nebular Hβ surface brightness and excitation class, respectively. Self-consistent plasma diagnostics of heavy-element ORLs of N2+ and O2+ suggest that a small fraction of cool (≲7000 K), dense (∼104–105 cm−3) materials may be present in some objects, though with large uncertainties. Our abundance analyses indicate that the abundance discrepancy factors (ADFs ≡ ORLs/CELs) of O2+ are correlated with the dichotomies between forbidden-line and He i temperatures. Our results likely point to the presence of a tiny fraction of cool, oxygen-rich dense clumps within diffuse warm ionized nebulae. Moreover, our elemental abundances derived from CELs are mostly consistent with asymptotic giant branch models in the range of initial masses from 1.5 to 5 M
⊙. Further studies are necessary to understand better the origins of abundance discrepancies in PNs around [WR] and wels stars.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献