Numerical Simulation of Solar Magnetic Flux Emergence Using the AMR–CESE–MHD Code

Author:

Liu Zhipeng,Jiang ChaoweiORCID,Feng XueshangORCID,Zuo PingbingORCID,Wang Yi

Abstract

Abstract Magnetic flux emergence from the solar interior to the atmosphere is believed to be a key process in the formation of solar active regions and driving solar eruptions. Due to the limited capabilities of observations, the flux emergence process is commonly studied using numerical simulations. In this paper, we develop a numerical model to simulate the emergence of a twisted magnetic flux tube from the convection zone to the corona, using the AMR–CESE–MHD code, which is based on the conservation-element solution-element method, with adaptive mesh refinement. The results of our simulation agree with those of many previous studies with similar initial conditions, but by using different numerical codes. In the early stage, the flux tube rises from the convection zone, being driven by magnetic buoyancy, until it reaches close to the photosphere. The emergence is decelerated there, and with the piling up of the magnetic flux, the magnetic buoyancy instability is triggered, which allows the magnetic field to partially enter into the atmosphere. Meanwhile, two gradually separated polarity concentration zones appear in the photospheric layer, transporting the magnetic field and energy into the atmosphere through their vortical and shearing motions. Correspondingly, the coronal magnetic field is also reshaped into a sigmoid configuration, containing a thin current layer, which resembles the typical pre-eruptive magnetic configuration of an active region. Such a numerical framework of magnetic flux emergence as established will be applied to future investigations of how solar eruptions are initiated in flux emergence active regions.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3