Time-variable Jet Ejections from RW Aur A, RY Tau, and DG Tau*

Author:

Takami MichihiroORCID,Günther Hans MoritzORCID,Schneider P. ChristianORCID,Beck Tracy L.ORCID,Karr Jennifer L.ORCID,Ohyama YouichiORCID,Galván-Madrid RobertoORCID,Uyama TaichiORCID,White MarcORCID,Grankin KonstantinORCID,Coffey DeirdreORCID,Liu Chun-FanORCID,Fukagawa MisatoORCID,Manset NadineORCID,Chen Wen-PingORCID,Pyo Tae-SooORCID,Shang HsienORCID,Ray Thomas P.ORCID,Otsuka MasaakiORCID,Chou Mei-YinORCID

Abstract

Abstract We present Gemini-NIFS, Very Large Telescope-SINFONI, and Keck-OSIRIS observations of near-IR [Fe ii] emission that are associated with well-studied jets from three active T Tauri stars—RW Aur A, RY Tau, and DG Tau—taken from 2012 to 2021. We primarily cover the redshifted jet from RW Aur A and the blueshifted jets from RY Tau and DG Tau, in order to investigate long-term time variabilities that are potentially related to the activities of mass accretion and/or the stellar magnetic fields. All of these jets consist of several moving knots, with tangential velocities of 70–240 km s−1, which were ejected from the star with different velocities and at irregular time intervals. Via comparisons with the literature, we identify significant differences in the tangential velocities between 1985–2008 and 2008–2021 for the DG Tau jet. The sizes of the individual knots appear to increase with time, and, in turn, their peak brightnesses in the 1.644 μm emission decreased by up to a factor of ∼30 during the epochs of our observations. The variety of decay timescales measured in the [Fe ii] 1.644 μm emission could be attributed to different preshock conditions should the moving knots be unresolved shocks. However, our data do not exclude the possibility that these knots are due to nonuniform density/temperature distributions with another heating mechanism, or, in some cases, due to stationary shocks without proper motions. Spatially resolved observations of these knots with significantly higher angular resolutions will be necessary to better understand their physical nature.

Funder

MoST, Taiwan

UNAM-PAPIIT

CONACyT Ciencia de Frontera project

European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3