Relative In-flight Response of IBEX-Lo to Interstellar Neutral Helium Atoms

Author:

Swaczyna P.ORCID,Bzowski M.ORCID,Fuselier S. A.ORCID,Galli A.ORCID,Heerikhuisen J.ORCID,Kubiak M. A.ORCID,McComas D. J.ORCID,Möbius E.ORCID,Rahmanifard F.ORCID,Schwadron N. A.ORCID

Abstract

Abstract The IBEX-Lo instrument on the Interstellar Boundary Explorer (IBEX) mission measures interstellar neutral (ISN) helium atoms. The detection of helium atoms is made through negative hydrogen (H) ions sputtered by helium atoms from the IBEX-Lo’s conversion surface. The energy spectrum of ions sputtered by ISN helium atoms is broad and overlaps the four lowest IBEX-Lo electrostatic analyzer (ESA) steps. Consequently, the energy response function for helium atoms does not correspond to the nominal energy step transmission. Moreover, laboratory calibration is incomplete because it is difficult to produce narrow-energy neutral atom beams that are expected for ISN helium atoms. Here, we analyze the ISN helium observations in ESA steps 1–4 to derive the relative in-flight response of IBEX-Lo to helium atoms. We compare the ratios of the observed count rates as a function of the mean ISN helium atom energy estimated using the Warsaw Test Particle Model (WTPM). The WTPM uses a global heliosphere model to calculate charge exchange gains and losses to estimate the secondary ISN helium population. We find that the modeled mean energies of ISN helium atoms, unlike their modeled fluxes, are not very sensitive to the very local interstellar medium parameters. The obtained relative responses supplement the laboratory calibration and enable more detailed quantitative studies of the ISN helium signal. A similar procedure that we applied to the IBEX-Lo observations may be used to complement laboratory calibration of the next-generation IMAP-Lo instrument on the Interstellar Mapping and Acceleration Probe (IMAP) mission.

Funder

National Aeronautics and Space Administration

Narodowe Centrum Nauki

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3