Abstract
Abstract
We determine the low-redshift X-ray luminosity function, active black hole mass function (BHMF), and Eddington ratio distribution function (ERDF) for both unobscured (Type 1) and obscured (Type 2) active galactic nuclei (AGNs), using the unprecedented spectroscopic completeness of the BAT AGN Spectroscopic Survey (BASS) data release 2. In addition to a straightforward 1/V
max approach, we also compute the intrinsic distributions, accounting for sample truncation by employing a forward-modeling approach to recover the observed BHMF and ERDF. As previous BHMFs and ERDFs have been robustly determined only for samples of bright, broad-line (Type 1) AGNs and/or quasars, ours are the first directly observationally constrained BHMF and ERDF of Type 2 AGNs. We find that after accounting for all observational biases, the intrinsic ERDF of Type 2 AGNs is significantly more skewed toward lower Eddington ratios than the intrinsic ERDF of Type 1 AGNs. This result supports the radiation-regulated unification scenario, in which radiation pressure dictates the geometry of the dusty obscuring structure around an AGN. Calculating the ERDFs in two separate mass bins, we verify that the derived shape is consistent, validating the assumption that the ERDF (shape) is mass-independent. We report the local AGN duty cycle as a function of mass and Eddington ratio, by comparing the BASS active BHMF with the local mass function for all supermassive black holes. We also present the
log
N
−
log
S
of the Swift/BAT 70 month sources.
Funder
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献