Modeling the Reverberation Response of the Broad-line Region in Active Galactic Nuclei

Author:

Rosborough Sara A.ORCID,Robinson AndrewORCID,Almeyda TrianaORCID,Noll Madison

Abstract

Abstract The variable continuum emission of an active galactic nucleus (AGN) produces corresponding responses in the broad emission lines, which are modulated by light travel delays, and contain information on the physical properties, structure, and kinematics of the emitting gas region. The reverberation mapping technique, a time series analysis of the driving light curve and response, can recover some of this information, including the size and velocity field of the broad-line region (BLR). Here we introduce a new forward-modeling tool, the Broad Emission Line MApping Code, which simulates the velocity-resolved reverberation response of the BLR to any given input light curve by setting up a 3D ensemble of gas clouds for various specified geometries, velocity fields, and cloud properties. In this work, we present numerical approximations to the transfer function by simulating the velocity-resolved responses to a single continuum pulse for sets of models representing a spherical BLR with a radiatively driven outflow and a disklike BLR with Keplerian rotation. We explore how the structure, velocity field, and other BLR properties affect the transfer function. We calculate the response-weighted time delay (reverberation “lag”), which is considered to be a proxy for the luminosity-weighted radius of the BLR. We investigate the effects of anisotropic cloud emission and matter-bounded (completely ionized) clouds and find the response-weighted delay is only equivalent to the luminosity-weighted radius when clouds emit isotropically and are radiation-bounded (partially ionized). Otherwise, the luminosity-weighted radius can be overestimated by up to a factor of 2.

Funder

National Science Foundation

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3