Magnetic Trapping of Galactic Cosmic Rays in the Outer Heliosheath and Their Preferential Entry into the Heliosphere

Author:

Florinski VladimirORCID,Guzman Juan AlonsoORCID,Kleimann JensORCID,Baliukin IgorORCID,Ghanbari KeyvanORCID,Turner DrewORCID,Zieger BertalanORCID,Kóta JozsefORCID,Opher MeravORCID,Izmodenov VladislavORCID,Alexashov DmitryORCID,Giacalone JoeORCID,Richardson JohnORCID

Abstract

Abstract This paper examines the geometry of interstellar magnetic field lines close to the boundary of the heliosphere in the direction of the unperturbed local interstellar magnetic field, where the field lines are spread apart by the heliopause (HP). Such field parting establishes a region of weaker magnetic field of about 300 au in size in the northern hemisphere that acts as a giant magnetic trap affecting the propagation of galactic cosmic rays (GCRs). The choice of an analytic model of the magnetic field in the very local interstellar medium allows us to qualitatively study the resulting magnetic field draping pattern while avoiding unphysical dissipation across the HP-impeding numerical magnetohydrodynamic (MHD) models. We investigate GCR transport in the region exterior to the heliosphere, including the magnetic trap, subject to guiding center drifts, pitch angle scattering, and perpendicular diffusion. The transport coefficients were derived from Voyager 1 observations of magnetic turbulence in the VLISM. Our results predict a ring current of energetic ions drifting around the interior of the magnetic trap. It is also demonstrated that GCRs cross the HP for the first time preferentially through a crescent-shaped region between the magnetic trap and the upwind direction. The paper includes results of MHD modeling of the heliosphere that provide the coordinates of the center of the magnetic trap in ecliptic coordinates. In addition to the heliosphere, we examine several extreme field draping configurations that could describe the astrospheres of other stars.

Funder

NASA ∣ SMD ∣ Heliophysics Division

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3