Abstract
Abstract
We evolve two high-resolution general relativistic magnetohydrodynamic simulations of advection-dominated accretion flows around nonspinning black holes (BHs), each over a duration ∼3 × 105
GM
BH/c
3. One model captures the evolution of a weakly magnetized (SANE) disk and the other that of a magnetically arrested disk (MAD). Magnetic flux eruptions in the MAD model push out gas from the disk and launch strong winds with outflow efficiencies at times reaching 10% of the incoming accretion power. Despite the substantial power in these winds, average mass outflow rates remain low out to a radius ∼100GM
BH/c
2, only reaching ∼60%–80% of the horizon accretion rate. The average outward angular momentum transport is primarily radial in both modes of accretion, but with a clear distinction: magnetic flux eruption–driven disk winds cause a strong vertical flow of angular momentum in the MAD model, while for the SANE model, the magnetorotational instability (MRI) moves angular momentum mostly equatorially through the disk. Further, we find that the MAD state is highly transitory and nonaxisymmetric, with the accretion mode often changing to a SANE-like state following an eruption before reattaining magnetic flux saturation with time. The Reynolds stress changes directions during such transitions, with the MAD (SANE) state showing an inward (outward) stress, possibly pointing to intermittent MRI-driven accretion in MADs. Pinning down the nature of flux eruptions using next-generation telescopes will be crucial in understanding the flow of mass, magnetic flux, and angular momentum in sub-Eddington accreting BHs like M87* and Sagittarius A*.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献