Global Modeling of Nebulae with Particle Growth, Drift, and Evaporation Fronts. II. The Influence of Porosity on Solids Evolution

Author:

Estrada Paul R.ORCID,Cuzzi Jeffrey N.ORCID,Umurhan Orkan M.ORCID

Abstract

Abstract Incremental particle growth in turbulent protoplanetary nebulae is limited by a combination of barriers that can slow or stall growth. Moreover, particles that grow massive enough to decouple from the gas are subject to inward radial drift, which could lead to the depletion of most disk solids before planetesimals can form. Compact particle growth is probably not realistic. Rather, it is more likely that grains grow as fractal aggregates, which may overcome this so-called radial drift barrier because they remain more coupled to the gas than compact particles of equal mass. We model fractal aggregate growth and compaction in a viscously evolving solar-like nebula for a range of turbulent intensities α t = 10−5–10−2. We do find that radial drift is less influential for porous aggregates over much of their growth phase; however, outside the water snowline fractal aggregates can grow to much larger masses with larger Stokes numbers more quickly than compact particles, leading to rapid inward radial drift. As a result, disk solids outside the snowline out to ∼10–20 au are depleted earlier than in compact growth models, but outside ∼20 au material is retained much longer because aggregate Stokes numbers there remain lower initially. Nevertheless, we conclude even fractal models will lose most disk solids without the intervention of some leapfrog planetesimal forming mechanism such as the streaming instability (SI), though conditions for the SI are generally never satisfied, except for a brief period at the snowline for α t = 10−5.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3