Long-term Evolution of Nonthermal Emission from Type Ia and Core-collapse Supernova Remnants in a Diversified Circumstellar Medium

Author:

Kobashi Ryosuke,Yasuda HaruoORCID,Lee Shiu-HangORCID

Abstract

Abstract The contribution of galactic supernova remnants (SNRs) to the origin of cosmic rays (CRs) is an important open question in modern astrophysics. Broadband nonthermal emission is a useful proxy for probing the energy budget and production history of CRs in SNRs. We conduct hydrodynamic simulations to model the long-term SNR evolution from explosion all the way to the radiative phase (or 3 × 105 yr at maximum) and compute the time evolution of the broadband nonthermal spectrum to explore its potential applications on constraining the surrounding environments, as well as the natures and mass-loss histories, of the SNR progenitors. A parametric survey is performed on the ambient environments separated into two main groups, namely, a homogeneous medium with a uniform gas density and one with the presence of a circumstellar structure created by the stellar wind of a massive red supergiant progenitor star. Our results reveal a highly diverse evolution history of the nonthermal emission closely correlated to the environmental characteristics of an SNR. Up to the radiative phase, the roles of CR reacceleration and ion−neutral wave damping on the spectral evolution are investigated. Finally, we make an assessment of the future prospect of SNR observations by the next-generation hard X-ray space observatory FORCE and predict what we can learn from their comparison with our evolution models.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3