Modeling the Hα Emission Surrounding Spica Using the Lyman Continuum from a Gravity-darkened Central Star

Author:

Aufdenberg Jason P.ORCID,Hammill Joseph M.ORCID

Abstract

Abstract The large, faint Hα emission surrounding the early B-star binary Spica has been used to constrain the total hydrogen recombination rate of the nebula and indirectly probe the Lyman continuum luminosity of the primary star. Early analysis suggested that a stellar atmosphere model, consistent with Spica A’s spectral type, has a Lyman continuum luminosity about two times lower than required to account for the measured Hα surface brightness within the nebula. To more consistently model both the stellar and nebular emission, we have used a model atmosphere for Spica A that includes the effects of gravity darkening as input to photoionization models to produce synthetic Hα surface brightness distributions for comparison to data from the Southern Hα Sky Survey Atlas. This paper presents a method for the computation of projected surface brightness profiles from 1D volume emissivity models and constrains both stellar and nebular parameters. A mean effective temperature for Spica A of ≃24,800 K is sufficient to match both the observed absolute spectrophotometry, from the far-UV to the near-IR, and radial Hα surface brightness distributions. Model hydrogen densities increase with the distance from the star, more steeply and linearly toward the southeast. The northwest matter-bounded portion of the nebula is predicted to leak ∼17% of Lyman continuum photons. Model H ii region column densities are consistent with archival observations along the line of sight.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intensity interferometry at Calern and beyond: progress report;Optical and Infrared Interferometry and Imaging VIII;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3