The Effect of Metallicity on the Nonequilibrium Abundance of Hydrogen-dominated Exoplanet Atmospheres

Author:

Soni VikasORCID,Acharyya KinsukORCID

Abstract

Abstract The atmospheric metallicity greatly influences the composition of exoplanet atmospheres. The effect of metallicity on the thermochemical equilibrium is well studied, though its effect on the disequilibrium abundance is loosely constrained. In this study, we have used the quenching approximation to study the effect of metallicity on the quenched abundance for a range of parameters (temperature: 500–2500 K, pressure: 10−4–103 bar, metallicity: 0.1–1000× solar metallicity). We determine the chemical timescale by finding rate-limiting steps in a reduced chemical network with a network-analysis tool and the thermochemical equilibrium abundance. The equilibrium abundance results are similar to the literature. The CO, H2O, and CO2 abundances increase with metallicity in the parameter range considered. The CH4 abundance increases with metallicity for CO/CH4 < 1 and is unaffected for CO/CH4 > 1. The chemical timescale of CO shows minimal change with metallicity, while the CH4 chemical timescale is inversely proportional to atmospheric metallicity. The quench level of CO shifts into the high-pressure region, and the quench level of CH4 shows complex behavior with metallicity. We benchmarked the quenching approximation with a one-dimensional photochemistry-transport model for two test exoplanets (GJ 1214 b and HD 189733 b) and found it to be in good agreement. We also found that the quenching approximation is a powerful tool to constrain atmospheric parameters. We demonstrated this by constraining the metallicity and transport strength for the test exoplanets HR 8799 b, HD 189733 b, GJ 436 b, and WASP-39 b.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3